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We examine the most efficient route for charge propagation in DNA duplex. We find a direct path along one
strand and a detour using the complementary strand compete with each other. Charge tends to take the path
along the strand whose energy levels are close to its energy, and yet there exists a crossover length Nc so that
for a transfer over a distance shorter than Nc the direct path is always advantageous. We obtain the analytic
results for the behavior together with various decay types such as a constant decay, an exponential decay, and
a crossover between them, whose validity is confirmed by the numerical calculation.
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Ever since Eley and Spivey1 proposed the DNA “� way,”
charge migration in DNA molecules has been extensively
studied in biochemistry and molecular electronics.2 A variety
of charge motions and underlying mechanisms have been
known in relation to the diverse length dependence of
charge-transfer rate. When a charge transmits via a “forbid-
den” state �or the band-gap state�, it tunnels through the gap
with an exponential tail responsible for the transfer rate
given by k�N�=k0 exp�−�N� with N being the length of the
molecular bridge.3,4 The observed decay scale has a wide
range depending on donor and sequence.5 When a charge
migrates via the molecule energy states, it spreads over a
large distance and yields an almost length-independent reso-
nance transfer.6 Meanwhile, a long-range charge transfer can
be realized also by multiple hoppings assisted by the cou-
pling to a dissipative environment.7

Charge motions in DNA are understood to some extent
and, yet, a complete picture is far to reach due to the system
complexity. Besides, some issues remain untouched despite
its fundamental importance such as which path charge would
cleverly take for the most efficient transfer. As shown in Fig.
1�a�, for a duplex that can be viewed as a railway track, there
exist many routes from the donor to acceptor site. For in-
stance, the charge can take the direct path along one strand
but also the detour accompanied by the back and forth hop-
ping between the strands.

The purpose of this work is to examine the efficient trans-
fer route by considering the charge transmission probability
for each path via the Green’s function method.8 First, we
focus on the charge propagation along one strand in order to
investigate its length dependence and the decay scales. The
decay types are found various according to the charge-carrier
energy but commonly display a natural tendency that a
charge having an energy closer to the energy states of the
strand can propagate over a long distance. With the help of
the results, we consider the interstrand coupling and charge
transmission via the possible paths depicted in Fig. 1�a�. Our
key results are summarized in Fig. 1�b� presenting the ratios
between the transmission along the direct path and the detour
path. When the incident charge energy is close to the energy
states of the strand 1 �for our numerical parameters, the en-
ergy levels of the strand 1 and the strand 2 are populated near

E�−4.3 eV and E�−1.1 eV, respectively�, the direct path
is naturally favorable for a long-range transfer. This behavior
persists up to a certain energy value at which the decay
scales of the two strands become comparable with each
other. As the energy increases further toward the energy lev-
els of the strand 2, charge propagation along the strand 2
decays slower than the strand 1. A simple-minded guess
would be that the detour using the strand 2 is preferred, but it
turns out that there exists a crossover distance Nc; charge
transfer over a short distance N�Nc still takes place mainly
via the direct path. We determine Nc as a function of the
energy analytically, in parallel check with numerical evalua-
tions. Further we show that the competition between the two
paths is responsible for the distance-dependence crossover
observed in recent experiment.9

We begin with the tight-binding Hamiltonian for a homo-
geneously sequenced DNA duplex. Charge motions along the
strand can be described by10
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FIG. 1. �Color online� �a� The schematic picture presenting the
direct and detour path for charge propagation in DNA duplex from
the donor �D� to acceptor �A� site. The corresponding propagator
�or the Green’s functions� are defined in Eq. �6�; �b� a preferential
route diagram in the energy �E� vs the distance �N� plane, where the
contour labels denote the ratio �Gdt� / �Gd�.
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H�
�i� = �

�=1

N

�ici,�
† ci,� − ti �

��,m�
�ci,�

† ci,m + ci,m
† ci,�� , �1�

with the strand index i=1,2, and ci,��ci,�
† � denoting the anni-

hilation �creation� operator of an spinless electron at �th base
of the strand i. The two strands can be coupled by the inter-
strand hopping as

H� = �
i�j

H�
�ij� = − �

i�j
�
�=1

N

t�ci,�
† cj,� �2�

so that the Hamiltonian for the molecule is given by Hmol
=�i=1

2 H�
�i�+H�. From the first-principles results, it is known

that the almost decoupled poly�dX�-chain has highest occu-
pied molecular orbital �HOMO� and lowest unoccupied mo-
lecular orbital �LUMO� band separated by a gap of a few
eV.11 Diagonalizing Hmol with small t�, we obtain the two
energy bands,

E�i��k� 	 �i − 2�− 1�iti cos k, i = 1,2. �3�

Regarding, for example, the strand 1 as poly�dG� and strand
2 as poly�dC�, �1 and �2 ���1� determine the locations of the
HOMO at guanine strand and the LUMO at cytosine strand,
respectively, while ti’s determine the bandwidths. In our
study, those band parameters are fixed from ab initio
calculations.11 For the donor-DNA-acceptor configuration of
interest here 
see Fig. 1�a��, the on-site energies of the end
bases coupled to the charge reservoirs are modified as

Hc = �
s

�ci,1
† ci,1 + cj,N

† cj,N� . �4�

The self-energy correction �s is in general an energy-
dependent complex number, but we discard its real part and
simply set �=−i�. This can be justified by a weak coupling
that makes negligible changes in the molecular energy levels
and the energy dependence of the coupling strength, for
which, we set �=0.005 eV. Charge-transfer rate can be
evaluated by k=2� /��dET�E�W�E−Ein :	DA� with Ein being
the energy of incident charge carrier and 	DA being the
chemical-potential difference between donor and acceptor.
Here W�E� is a weight function that selects the energy range
and T�E� is the probability for a charge carrier with energy E
to transmit through the molecular bridge or the transmission.
For small 	DA, the system lies in the linear-response regime
so that k	�2� /��	DAT�Ein�, indicating that the transmission
is a key factor to determine the characteristic behaviors of
the charge transfer. It should also be mentioned that Ein for
particle �hole� transfer is usually considered to be in the vi-
cinity of HOMO �LUMO� bands of donor molecules. Mean-
while, in charge-transfer experiments, light irradiation is of-
ten used for creating charge carrier in charge-transfer
experiments and would give rise to molecular excitations
such as nonlinear lattice vibration. In this case, we need to
consider inelastic-scattering processes, which would be done
by microscopic modeling of the excitations and their cou-
pling to charge carrier. In this work, we remain in the elastic-
scattering picture but instead examine T�E� for various car-
rier energies, which helps to infer the excitation effects. With

the help of the Fisher-Lee relation, we can obtain the trans-
mission by

T�E� = 4�2�G1N�2, �5�

with G1N being the component of the retarded Green’s func-
tion G= 
�E+ i0+�I−Hmol−Hc�−1. For our configuration
where both acceptor and donor are located at the strand 1, we
have G1N= 
E−H�

�1�−Hc−H�
�12�G�2�H�

�21��1N
−1, and by further

using H�
H�, G1N	Gd+Gdt, where

Gd = 
E − H�
�1� − Hc�1N

−1  G̃1N
�1�,

Gdt = t�
2 �

�,m
G̃1�

�1�G�m
�2�G̃mN

�1� , �6�

with G�i�= 
E−H�
�i��−1, and G̃�i�= 
E−H�

�i�−Hc�−1. The physi-
cal meanings of these Green’s functions are clear from Fig.
1�a�. While Gd represents a direct propagation without inter-
strand hopping, Gdt represents a “detour” propagation with
partial route on the strand 2.

We can see that a key component in the propagators is the
bare Green’s function of the strand i, G�i�. Writing H�

�1� in the
matrix representation, inversion can be readily done by G�m

�i�

=Cm�
�i� /DN

�i� with DN
�i� and Cm�

�i� being the determinant and the
matrix cofactor of 
EI−H�

�i��, respectively. The recursion re-
lations between Dn’s can be solved to yield Dn

�i� / tn

=Sn+1
�i� /S1

�i� for even n and Dn
�i� / tn−1= �E−�i�Sn+1

�i� /S2
�i� for odd

n, where Sn��i�=sin�n�i /2� and cos �i= 
�E−�i�2−2ti
2� /2ti

2.
Further algebra leads to the cofactor, Cml

�i� = �−1�l+mDS−1
�i� DN−L

�i�

with S and L denoting the smallest and the largest integers
between l and m, respectively. Putting together, we obtain the
bare Green’s functions, especially those relevant to our in-
vestigation, as

tiG�=m
�i� =

�E − �i�SN��i�
2 cos��i/2�SN+1��i�

, for � = 1,N ,

− tiG1N
�i� =

S1��i�
SN+1��i�

	 e−�iN/2 for �i  Im
�i� � 1. �7�

Note that the last line is valid also for G�m
�i� if N is replaced

with ��−m+1�. Let us here note that �i can be real or imagi-
nary, depending on the incident charge energy E. If E lies
within the energy band of the strand i, that is, 0� �E−�i�
�2�ti�, �i is a real number. Otherwise, �i becomes imaginary,
resulting in the exponential decay of the Green’s functions.

Having in mind the energy dependence of G�i�, we first
examine the case of t�=0. Since only one strand through
which charges transmit is relevant here, for notation simplic-
ity, let us drop the strand index and write the transmission of
the decoupled strand allowed only by the direct path propa-
gation as Td�E�=4�2�Gd�2. Using the contact Hamiltonian Hc

given by Eq. �4� with i= j, we obtain G̃1N=G1N /det M, where
M�m=�m− i�G�m with � ,m=1,N. After some manipulation,
we arrive at
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Gd = −
1

t

S1

�2SN−1 − SN+1 + 2i�SN
, �8�

with �=� / t. Let us remind the fact that S’s here depend on E
through �. When E coincides with the energy levels of the
strand 
E=E�i��k� given by Eq. �3��, we have � /2=k with 0
�k�� /2. On the other hand, for E lying in the band-gap
region, � is an imaginary number. Once we have reflected
these energy dependence of � in Gd given by Eq. �8�, we
obtain the resulting transmission which shows various types
of decay as

Td = �1, E = E�i��k� , k 	 n�/�N + 1�
4�2�1 + �2�−2, E = �i

4�2e−�N, E � E�1�, E 
 E�2�,
� �9�

with n being integers. In the first line, we recover the familiar
resonance transmission inside the energy band. The transmis-
sion for the band edge is given by the fractional number, as
the second line reads. The exponential decays are also re-
ported in the previous studies.3,4,6 Yet, it is remarkable here
that those various decay types could be found in a single
framework of quantum transport theory. For the tunneling
through the band gap, the corresponding transmission is
given by the last line of Eq. �9�, which decays exponentially
with N. The decay scale, the so-called � value, is given by
�=ln
���+��2−1�	 ln�2��	2 ln
�E−�� / t� with �=−1+ �E
−��2 /2t2. Interestingly, it is identical to the decay scale ob-
tained in the McConnell12 model.

We now switch on the coupling between the two strands.
For a specific example, consider a poly�dG�-poly�dC� with
both donor and acceptor located in poly�dG� �strand 1�. Let
us first discuss our numerical results presented in Fig. 2.
When E lies within or near the energy levels of poly�dG�, the
detour propagation is strongly suppressed because G�m

�2�

�e−��−m��2 with �2�1. For the case, we expect T�E�
	4�2�Gd�2, and hence T�E�	Td. This is indeed so, as the
lower panel of Fig. 2 shows that the analytic results �lines�
given by Eq. �9� are perfectly consistent with the numerical
data �points�. On the other hand, when E is close to the
energy levels of poly�dC�, the propagation along the G chain
in turn rapidly decays with distance so that Gd becomes neg-
ligible and the detour propagation Gdt	�t� / t1�2G1N

�2� would
make a major contribution. Since for the process, poly�dG� is
effectively absent, the length dependence of the correspond-
ing transmission would remain the same as Td apart from its
magnitude roughly t�

4 times smaller, as the lower peaks in-
dicate in Fig. 2�a�. For the intermediate energy range such as
�G+2tG�E��C−2tC, a question naturally arises which of
the direct and the detour propagation would be dominant.
This can be answered by examining �Gdt� / �Gd�. Using the
bare Green’s functions for both strands exponentially decay
in the energy regions 
see Eq. �7� together with its corre-
sponding discussion�, we evaluate Eq. �6� to reach

�Gdt�
�Gd�

= �
xN/2 − 1

�x − 1�2 , �10�

with � t�
2 e−�2 / t1t2 and xe�1−�2. A given carrier energy

fixes the decay scales and hence x. In Fig. 3�a�, we plot Eq.

�10� for various values of E, for which the effective pathway
of charge transfer is determined by N. For our discussion, let
us define the crossover length by �Gdt� / �Gd�N=Nc

=1 for a
given E; for example, Nc	4 for E=−1.192 eV. This allows
us to conclude that for N�Nc, charge transfer occurs mainly
via detour propagation, while for N�Nc, direct propagation
prevails. Although Eq. �10� cannot be solved to express Nc in
terms of the energy, it is worthwhile examining the limiting
cases. Considering the case of x�1, where the direct path
has far shorter decay scale, we have Nc	4−2 ln � / ln x. For
the case, Nc is small so that for a relatively longer distance
transfer, the detour path along the slowly decaying comple-
mentary strand is advantageous. Interestingly, however, we
see that there exists a lower bound of Nc such as Nc�4. This
indicates that for a charge transfer over a distance shorter
than four base pairs, charges always prefer the direct path to
the detour despite the slow decay of the latter.

Let us discuss a nontrivial consequence of the crossover
distance on the length dependence of the transfer rate. We
numerically evaluate the transmission for the E values in
Fig. 3�a� for comparison. As shown in Fig. 3�b� �see, e.g.,
E=−1.192 eV�, the decay scales abruptly changes at Nc
	4, well correspondent with the analytic result. To observe
the decay scale crossover, on the other hand, Nc should
be not so large for T experimentally appreciable. This cru-
cially depends on the charge-carrier energy. When x	1�E
	−2.177 eV� where the two strands has comparable decay

(a)

(c)

(d)

(b)

FIG. 2. �a� The dimensionless charge-transfer rate of poly�dG�-
poly�dC� for the various molecule lengths �2, 4, 6, 8, and 10 in
descending order�. According to the energy location, T displays
different length dependence. We sample the energy values indicated
by the arrows and display the corresponding length dependence in
the lower panel where the points obtained by numerical calculation
and the lines from Eq. �9�. The parameters for numerical computa-
tions are �G=−4.278 eV, tG=0.114 eV, �C=−1.072 eV, tC

=0.060 eV, and t�=0.034 eV, which will be used throughout this
work.
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scales, we obtain Nc
2	8�−1, which can be large when �


1. For the case, the decay scale crossover is unlikely to
observe—but instead—the transfer displays the single scale
such as many of experiments.5,13 In fact, the crossover be-
tween the fast and slow decay was experimentally observed
in a DNA of base sequence G�T�NGGG.9 On the other hand,
we find that the phenomenon is not specific to the T bridge
but can also occur in a guanine bridge; note that the cross-
over behavior presented in Fig. 3�b� is obtained for
G�G�NGGG. Let us now demonstrate that the crossover ob-
served in the charge-transfer rate of G�T�NGGG �Ref. 9� has
the same origin. To do so, we set the energy of incident
charge to be in the vicinity of HOMO of gua base11 and
take the weight function to determine the energy window
contributing to the charge transfer, as W�E�=1 for E−Ein
� 
−w ,w� and W�E�=0 otherwise. We consider three cases
according to which strand accommodates the molecular or-
bital inside the energy window: �a� none, �b� adenine, and �c�
thymine 
see Fig. 4�d� showing the molecular orbitals and
the arrows therein indicating the energy window widths for
the three cases�. In the case of �a�, charges tunnel through the
band gap and hence the transfer rate exhibits the exponential
decay, as shown in Fig. 4�a�. Increasing w to include HOMO
of adenine, the crossover from fast to slow decay occurs 
see
Fig. 4�b�� such as the experiment and as found in the trans-
mission of guanine bridge. Increasing w further to be in the
case �c�, charges travel via the direct path along the thymine
strand providing resonance states, resulting in the length-
independent transfer. It should be noted that the chemical-

potential difference between donor and acceptor 	DA deter-
mines the energy window width and therefore the decay
behavior. In the experiment,9 no direct clue for the value of
	DA is available. On the other hand, our results interpret 	DA
to be in the case �b� and also suggest future experimental test
if the variety of the length dependence of transfer rate is
realizable by controlling 	DA.

In summary, we have studied the charge transmission
probability analytically and numerically. We have obtained
various length dependences for the transmission probability
according to the incident charge energy: the length-
independent resonant transmission within the energy band
and the exponential decay inside the band-gap region. Inter-
estingly, in the band-gap region, the decay scale crossover is
found to occur as a consequence of the competition between
the direct path and the detour path, well explaining the ex-
perimental observation. Although not presented here, we
have also considered environmental fluctuations by introduc-
ing a randomness in the hopping integral caused by ther-
mally agitated random deformations of molecular structure.
We have found that the length-dependence behaviors are pre-
served even in the presence of fairly strong randomness, ex-
cept the length-independent resonance transmission which
for finite randomness decays exponentially, signifying the
localization effects. We have also evaluated the localization
lengths for various randomness strengths and have confirmed
that they are much longer than the tunneling length. This
well explains our finding that the decay behavior in the tun-
neling regime is robust against the structural randomness.

This work was supported by the Korea Science and Engi-
neering Foundation �Grant No. R01-2007-000-20084-0�.

(a)

(b)

FIG. 3. �Color online� �a� �Gdt� / �Gd� vs the length of poly�dG�-
poly�dC� for various values of x, where the crossover length is
determined by �Gdt� / �Gd�=1 for a given x and �b� the length depen-
dence of the charge-transfer rate that undergoes a decay scale cross-
over at Nc.

(a)

(b)

(c) (d)

FIG. 4. �Color online� Charge-transfer rates through Tn bridge
for �a� w=0.70 eV, �b� w=3.23 eV, and �c� w=4.00 eV, display-
ing the exponential decay, the crossover, and the length indepen-
dence, respectively. The energy ranges in the cases are denoted in
�d� which is the energy diagram reproduced by Eq. �3� with the
tight-binding parameters �in the unit of eV� �A=−5.245, �T

=−0.972, tA=0.021, tT=0.023, and t�=0.030.
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